equation -k8凯发
split equations with alignment
\begin{equation}\begin{split}
h_c&=\frac{1}{2n} \sum^n_{l=0}(-1)^{l}(n-{l})^{p-2}
\sum_{l _1 \dots l _p=l}\prod^p_{i=1} \binom{n_i}{l _i}\\
&\quad\cdot[(n-l )-(n_i-l _i)]^{n_i-l _i}\cdot
\bigl[(n-l )^2-\sum^p_{j=1}(n_i-l _i)^2\bigr].
\end{split}\end{equation}
split
\begin{split}
a& =b c-d\\
& \quad e-f\\
& =g h\\
& =i
\end{split}
equation
\begin{equation}
a=b
\end{equation}
multline
\begin{multline}
a b c d e f\\
i j k l m n
\end{multline}
others
\sqrt[\leftroot{-2}\uproot{2}\beta]{k}
roots
a\xleftarrow{n \mu-1}b\xrightarrow[t]{n\pm i-1}c
extensible arrows
\boxed{\eta \leq c(\delta(\eta) \lambda_m(0,\delta))}
boxed formulas
\begin{equation}
\frac{1}{k}\log_2 c(f)\;\tfrac{1}{k}\log_2 c(f)\;
\sqrt{\frac{1}{k}\log_2 c(f)}\;\sqrt{\dfrac{1}{k}\log_2 c(f)}
\end{equation}
fraction
2^k-\binom{k}{1}2^{k-1} \binom{k}{2}2^{k-2}
binomial expressions
multiline subscripts and superscripts
\sum_{\substack{
0\le i\le m\\
0
p(i,j)
\sum_{\begin{subarray}{l}
i\in\lambda\\ 0
\end{subarray}}
p(i,j)
\begin{cd}
s^{\mathcal{w}_\lambda}\otimes t @>j>> t\\
@vvv @vv{\end p}v\\
(s\otimes t)/i @= (z\otimes t)/j
\end{cd}
gather
\begin{gather}
a_1=b_1 c_1\\
a_2=b_2 c_2-d_2 e_2
\end{gather}
align
\begin{align}
a_1& =b_1 c_1\\
a_2& =b_2 c_2-d_2 e_2
\end{align}
\begin{align}
a_{11}& =b_{11}&
a_{12}& =b_{12}\\
a_{21}& =b_{21}&
a_{22}& =b_{22} c_{22}
\end{align}
\begin{align}
x& = y_1-y_2 y_3-y_5 y_8-\dots && \text{by wq}\\
& = y’\circ y^* && \text{by bruce}\\
& = y(0) y’ && \text {by axiom}
\end{align}
\begin{align}
x&=y & x&=y & a&=b c\\
x’&=y’ & x’&=y’ & a’&=b\\
x x’&=y y’ & x x’&=y y’ & a’b&=c’b
\end{align}
equation groups with mutual alignment
alignment building blocks
\begin{equation*}
\left.\begin{aligned}
b’&=-\partial\times e,\\
e’&=\partial\times b - 4\pi j,
\end{aligned}
\right\}
\qquad \text{maxwell’s equations}
\end{equation*}
p_{r-j}=
\begin{cases}
0& \text{if $r-j$ is odd},\\
r!\,(-1)^{(r-j)/2}& \text{if $r-j$ is even}.
\end{cases}
matrices
\bigl( \begin{smallmatrix}
a&b\\ c&d
\end{smallmatrix} \bigr)
smallmatrix
\begin{pmatrix}
d_1t&-a_{12}t_2&\dots&-a_{1n}t_n\\
-a_{21}t_1&d_2t&\dots&-a_{2n}t_n\\
-a_{n1}t_1&-a_{n2}t_2&\dots&d_nt
\end{pmatrix}
pmatrix
网站地图